Causality and Research Design

POLI 205 Doing Research in Politics

Causality and Research Design

POLI 205 Doing Research in Politics

Fall 2015
Causal Theories

- The goal of political science (and all science) is to create and then evaluate causal theories
- Cause (X) and effect (Y)
- Basis of causality
 - Time Ordering: The cause precedes the effect
 - Co-Variation: Changes in X are associated with changes in Y
 - Non-Spuriousness: There is not a variable Z that causes both X and Y
Determinism and Probabilities

- **Deterministic**: If X then Y with certainty
 \[
 Y_i = \alpha + \beta X_i
 \]

- **Probabilistic**: If X then Y with uncertainty
 \[
 Y_i = \alpha + \beta X_i + \epsilon_i
 \]
Multiple Causes

- Theories are *bivariate*, X causes Y, but reality is *multivariate*
- X causes Y but some other variables, Z, might also (or instead) cause Y
- If we don’t control for Z, the other possible causes of Y, then our conclusions about whether X causes Y might very well be mistaken
- How do we control for Z?
 - Research design
Four Causal Hurdles

- Is there a credible *causal mechanism* that connects X to Y?
- Can we rule out *reverse causation* the possibility that Y could cause X?
- Is there *covariation* between X and Y?
- Have we controlled for all *confounding variables* Z that might make the association between X and Y spurious?
Causal Mechanism

- Answer the “how” and “why” questions
- What is the process or mechanism that, logically speaking, suggests that X might be a cause of Y?
- What is it specifically about having more(less) X that causes more(less) Y?
Reverse Causation

- Endogeneity
- A country’s level of economic development causes it to be more or less democratic
- Variations in consumer confidence cause a president’s approval rating to change
- Ethnic conflict causes civil wars.
Covariation

- Measured empirically
- *Correlation is not causation*, but it’s normally a key component of causation
Confounding Variables

- When one scholar is evaluating another’s work, perhaps the most frequent objection is that the researcher “failed to control for” some potentially important cause of the dependent variable.
- So long as a credible case can be made that some uncontrolled-for Z might be related to both X and Y, we cannot conclude with full confidence that X indeed causes Y.
- The importance of *research design*
Causal Checklist

1. Is there a credible causal mechanism that connects X to Y?
 - Yes
 - No

2. Can we eliminate the possibility that Y causes X?
 - Yes
 - No

3. Is there covariation between X and Y?
 - Yes
 - No

4. Have we controlled for all confounding variables Z that might make the association between X and Y spurious?
 - Yes
 - Maybe
 - No

 - Proceed with confidence and summarize your findings.
 - Control for confounding variables until your answer is "yes" or "no."
 - Stop and reformulate your causal explanation.
Use of the Scientific Method

- Scientific method
- Scientific research:
 - The goal is *inference*
 - Procedures are public
 - Conclusions are uncertain
 - *Observe* and *explain*
 - Can be replicated
Inference and Validity

- **Inference**: the process of using *what we know* to learn about *what we do not know*
 - What we do not know: is our theory correct?
 - What we do know: data

- **Types of inference**:
 - *Descriptive* inference: using observations (data) to learn about unobserved facts
 - *Causal* inference: using observations (data) to learn about causal effects
Inference and Validity

- **Validity**: Are we making *valid* inferences about the relationship between X and Y?

- Types of validity:
 - External
 - Internal
Types of Validity

- **External validity**: Degree to which we can be confident that our results apply to *other contexts*
 - Are the results generalizable?
- **Internal validity**: Degree to which we can be confident that X causes Y
- Threats to validity
 - What could reduce our confidence about our results?
 - Causal hurdles
Causality and Research Design

POLI 205
Doing Research in Politics

Causality
Research Design

Causal Hurdles

1. Is there a credible causal mechanism that connects X to Y?
 - Yes
 - No
 2. Can we eliminate the possibility that Y causes X?
 - Yes
 - No
 3. Is there covariation between X and Y?
 - Yes
 - No
 Proceed with caution to hurdle 3.
 Think about confounding variables before moving to hurdle 4.
 4. Have we controlled for all confounding variables Z that might make the association between X and Y spurious?
 - Yes
 - Maybe
 - No
 Control for confounding variables until your answer is "yes" or "no."
 Stop and reformulate your causal explanation
 Proceed with confidence and summarize your findings.
Other Threats to Validity

- Poor measures of variables
 - are the measures valid and reliable?
- Selection bias
 - is the sample representative?
- Setting
 - *Hawthorne* effect
Global warming isn't real because I was cold today! Also great news: World hunger is over because I just ate.
So much for “drug-addict” welfare recipients...

In Tennessee, a new law requiring welfare applicants to be drug tested has turned up only 1 positive test in over 800 applications.

That’s 0.12%.

Source: The Tennessean
Research Design

- **Research Design**: the plan to collect information to address your research question
 - Two types: *Experimental* and *Observational*
 - Four Components:
 - Research question
 - Theory
 - Data
 - Data analysis

- **Data**: pieces of information
 - Can be *qualitative* or *quantitative*
Causality

• Does X (treatment) cause Y (outcome)?
• Causal (treatment) effect: $\tau_X = Y_1 - Y_0$
• τ_X : Treatment (X)
• Y_1 : Group that received treatment
• Y_0 : Group that did not receive treatment
Experimental Design

- **Experiment**: is a research design in which the researcher both *controls* and *randomly assigns* values of the independent variable (treatment) to the subjects.
- Causal (treatment) effect: $\tau_X = Y_1 - Y_0$
Experimental Design

- **Control**: the values of the independent variable that the subjects receive are not determined either by the subjects themselves, or by nature
- **Random Assignment**: All participants are equally likely to be in the control group as the treatment group
 - *Treatment* group: Group that receives treatment
 - *Control* group: Group that did not receive treatment
- Why is random assignment important for experimental designs?
• **Observational**: is a research design in which the researcher does not have control over values of the independent variable, which occur naturally
 - Variation of X and Y important

• Causal (treatment) effect: $\tau_X = Y_1 - Y_0$
 - more (less) $X = $ more (less) Y
 - statistical controls for Z variables

• *Large n* either Cross-sectional or time-series, and case study
Large n Cross-Sectional

- A *cross-sectional observational study* examines variation across a cross-section of individual spatial units
 - Same variable(s) across units
- Example: the connection between the preferences of the voters from a district (X) and a representative’s voting behavior (Y)
Large n Times-Series

- A *time-series observational study* examines variation within one spatial unit over time
 - Same variable(s) and same unit(s) over time
- Example: the connection between GDP growth and presidential approval from 1995-2005
Longitudinal

- A longitudinal observational study examines variation across spatial units over time
 - Panel data: Same variable(s) across the same units and over time
 - Times-series cross-sectional (TSCS): Same variable(s) across different units and over time

- Examples:
 - Panel: the connection between GDP growth of countries in the European Union and incumbent party support from 1995-2005
 - TSCS: the connection between ideology and concern about climate change from 1995-2005 using pooled surveys
• **Case Study**: Precise description of a single case ($n=1$ or maybe a few)
 - *Exploratory*: little is known about a phenomenon
 - *Descriptive*: discover or describe what happened in a single or select few situations
 - *Explanatory*: answer how or why questions
Case Study Approaches

- Controlled Comparison:
 - *Method of difference*:
 - One (or a few cases) $Y=1$
 - One (or a few cases) $Y=0$
 - Z is the same across cases; what is different? (X)
 - *Method of agreement*
 - Two (or a few) cases $Y=1$
 - What is similar across cases? (X)
Case Study Approaches

- **Congruence Procedures**: congruence between values of X and Y
 - **Type 1**: Compare to typical values
 - Are values of X higher or lower than average matched by higher or lower values of Y?
 - Look for extreme values of X and Y
 - **Type 2**: Multiple within-case comparisons
 - Does X and Y covary across a range of circumstances within the case?
 - Need multiple occurrences of X and Y
 - Approaches a large-n study as number of observations increase
Case Study Approaches

- Process Tracing: Explores the chain of events through which X causes Y

$$X \rightarrow p \rightarrow q \rightarrow r \rightarrow Y$$